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!  Introduction 
In operations that involve explosives, magnetic fields (B) are a concern 

because of induced voltages on detonator cables.  The fields could be generated 
by a nearby lightning strike, or even within a AFaraday cageA struck by lightning 

C#.#D.  The wavelength of the lightning induced fields is much longer than typical 
detonator cables C#.2D.  A hypothetical example consisting of explosives in a 
drum initiated by the detonator at the top is shown in Figure #.#.  This 

configuration without an initiation system is normally considered safe.  
However, given a magnetic field, a cable voltage (Vloop) will be created.  It can be 
computed from the following eHuation that assumes the cable naturally forms a 

loop of Areacable C#.ID. 

    

€ 

V (t)loop =  - Areacable
dB
dt

      (1.1) 

For safety reasons, calculating this voltage accurately is important.  
If there are metal structures consisting of shorted-large loops around 

the explosives, the calculation becomes much more complex.  The 
voltage could be significantly higher or lower than that calculated by eH. 
#.#.  In Figure #.2, the hypothetical explosives are mounted on a work 

stand consisting of metal beams that create two shorted-large loops.  
The loop formed by the cable and drum may have many non-conduction 
gapsJ  e.g., between the detonator bridge-wire and drum, and the open 

end of the cable to drum or work stand.  The loop voltage would divide 
according to the capacitances of the gaps.  For simplicity, in this report 
the loop voltages in the gaps will be lumped into one voltage in one gap.  

In the didactic examples, the drum is also removed.   

The goal of this report is to explain how to estimate the cable 
voltage in a changing magnetic field surrounded by a metal structure.  

Two models, full and simplified, have been developed and validated by 
laboratory studies.  The full treatment of the coupling problem consists of analytical eHuations, ID 
electromagnetic computational coupling models, and circuit models will be published CLD.  This report 

covers the simplified eHuations based on flux density calculations in Section 2.  These simpler eHuations 
produce rough estimates that can establish the Nustification for the full analysis.  Oe will start with 
generic examples to illustrate the application of the theory, and practical configurations will be covered 

at the end of the section.  Laboratory studies were performed on canonical loops to validate the 

Figure 1.2.  Explosives are 
supported in a work stand. 

Figure  1.1.  

Explosives and 
detonator cable. 
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analysis, and the results are reported in Section I.  A 
computer simulation shows in Figure #.I the concentration of 

magnetic flux lines around a shorted-large loop and an open-
small loop on the lower left when exposed to a spatially 
uniform and time-varying magnetic field.  An obNective of this 

report is to provide an intuitive understanding of the pattern 
in the figure and how the voltages are generated. 

 

 

 

2  -implified E4uations 
The two obNectives of this section are to provide (#) an intuitive understanding of how large loops 

interact with smaller loops and (2) a simple formula to estimate the open-small loop voltage.  In order to 

offer simplified eHuations, we must make three assumptions.  (a) Oe will concentrate on rudimentary 
sHuare loops, (b) of practical sizes in the range of inches to feet.  (c) It is assumed that the inductive 
impedance of the loops is much greater than the resistance, and it will be eliminated in the calculations.  

Oithin the dimensional constraints, the simple formula will produce a loop voltage that should be 
accurate within a factor of two of the real value.  Two different configurations will be comparedJ  (#) 
separated loops and (2) touching loops, and (I) practical considerations will be discussed.  

2.1  Separated 1oops 

The open-circuit voltage and short-circuit current for a small and large sHuare loop will be 
compared.  (See Figure 2.#.)  The small loop has a side length of SLenT, and the large loop is SxT times 
the small-loop dimension.   The gap voltages in the open loops areJ 

    

€ 

V (t)small =  −  Len2 dB
dt

                               (2.1)

V (t)large =  −  x Len( )
2
 dB

dt
=  x2 V (t)small      (2.2)

 

Note that the large-loop voltage is increased by the sHuare of the length ratio, SxT.    

 

Figure 2.1.  The large-loop dimension is SxT times the small-loop length. 

Figure 1.3.  Computer simulated 

magnetic field. 
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The short-circuit current is predominately limited by inductance of the loop, and hence is 
proportionate to the length of the loop.  The closed loop current (i) is determined by the flux (Φ) within 

the loop divided by the inductance (L).  The inductance for practical size loops can be estimated from 
the free-space inductance.  If the small-loop inductance is L, the large-loop inductance is about x L.  For 

the small loop, the flux is eHual to the area, Len2, times the flux density (B).  The current in the large loop 
is SxT times the current in the small loop. 

 

    

€ 

i (t)small =  Φ(t)small

L
=  Len2

L
 B(t)                                                  (2.3)

i (t)large =  
Φ(t)large

x L
=  x2 Len2

x L
 B(t) =  x Len2

L
 B(t) =  x i(t)small      (2.4)

 

For the case where SxT is two, the large-loop voltage is L times higher than the small-loop voltage.  
The current is only twice as high.  The voltage and current scales differently from the small to the large 
loop, and the point becomes important for the touching loops. 

    

€ 

V (t)large =  −  22  Len2 dB
dt

=  4 V (t)small      (2.5)

i (t)large =  −   2 Len2

L
B(t) =  2 i (t)small         (2.6)

 

An argument was made earlier that the inductance of the loop could be estimated by the free-
space permeability times the circumference.   A commonly used inductance formula for a sHuare loop 

C2.#D and the free-space estimate areJ 

  

€ 

Lsquare =  µ0 2 Len
π

  ln Len
radius
 

 
 

 

 
  −0.774 

 

 
 

 

 
       (2.7)

Lsq-free-space ≈  µ0 4 Len                                  (2.8)
 

 For a loop with a wire radius of # mm, the wire in free-space inductance and the sHuare loop 

inductance are plotted in Figure 2.2.  The use of free-space wire inductance is a reasonably close 
approximation for human-size loops and will provide a more intuitive understanding of loop voltages 
and currents. 

 

Figure 2.2.  For human-size loops, the free-space inductances and sHuare loop inductances are similar. 
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2.2  Touching loops 

To understand the magnetic coupling of touching loops, we must investigate the flux around a wire 
generated by a current.  (See Figure 2.I.)  The flux density drops off by the inverse of the radius C2.2DJ 

    

€ 

B(t) =  µ0 i (t)
2π r

     (2.8)  

The flux density is plotted in the figure along with the normalized cumulative flux from # mm to 5 
cm.  This concentration of the flux around the shorted-large loop is the mechanism that could 
significantly increases the detonator cable voltage.   

 

Figure 2.3.  Flux density drops Huickly away from the wire. 

The touching-loop configuration is shown in 

Figure 2.L.  The two loops are in the same x-y plane, 
and the uniform magnetic field is pointed out in the z-
direction.  The touching, or shared, wire is in the x-

direction.  The shorted and open loops have lengths 
of Lenshorted and Lenopen, respectively, and shorted-  or 

open-loop wire radius, R.   The open-loop voltage is 
determined by the rate of change of the total flux.  
Because the small loop is touching on the outside of 

the large loop, the total flux consists of the external 
field and the magnetic field generated by the short-
circuit current in the large loopJ 

    

€ 

Vopen = −
d Φtotal−open

dt
 ,  where                                                 (2.9)

       Φtotal -open = Btotal−open  dA
Aopen

∫  =  Bext + Bshorted( ) dA      (2.10)
Aopen

∫
 

 The obNective is to solve the voltage eHuation in terms of physical loop dimensions and the 

magnetic field.  Considering the flux eHuation, two simplifications will be helpfulJ  Only the flux from the 
shared wire portion of the large loop will be counted, i.e., the contribution from the perpendicular and 

Figure 2.4.  Touching-loop configuration. 
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far parallel wires of the large loop will be ignored.  Oe will again use the wire in free-space inductance 
approximation.  The total flux is approximated byJ 

    

€ 

   Φtotal -open = Bext  Lenopen
2 +  Lenopen Bshorted−y  dy

R

Lenopen

∫ ,                               (2.11)

       assume Lshorted ≈ µo  4 Lenshorted  and applying [2.3]

       Bshorted−y = µo
ishorted

2π y
 = µo

 Lenshorted
2

2π y Lshorted 
 Bext  ≈

 Lenshorted

8π y   
 Bext           (2.12)

   Φtotal -open ≈ Bext  Lenopen
2 +  Lenopen B  Lenshorted

8π y   
 Bext  dy

R

Lenopen

∫                    (2.13)

                ≈ Bext  Lenopen
2 +

 Lenopen Lenshorted

8π    
 Bext

1
y

 dy
R

Lenopen

∫                     (2.14)

                ≈ Bext  Lenopen
2 +

 Lenopen Lenshorted

8π    
 Bext   ln 

Lenopen

R

 

 
  

 

 
                  (2.15)

          assuming Lenopen >>  R

 

Substituting the flux eHuation 2.#5 into 2.[, the open-small loop voltage isJ 

    

€ 

Vopen ≈ −  Lenopen
2 +

 Lenopen Lenshorted

8π    
  ln 

Lenopen

R

 

 
  

 

 
   

 

 
 
 

 

 
 
 
 d Bext

dt
                    (2.16)  

The first term accounts for the flux captured by the 
Nust the open loop, without the shorted loop.  The second 

term describes the flux generated by the shorted loop 
that is captured by the open loop.   The natural 
logarithmic function (ln) in eH. 2.#\ complicates our 

understanding and is plotted in Figure 2.5.  The open-loop 
length to wire radius ratio is compressed by the function.  
For our type of application, the log function will return a 

number between # and #0. 

There are limitations to the use of the simplified 
eHuation, such as the open loop must be smaller than the 

shorted loop.  If the small-open loop is inside of the 
shorted-large loop, the sign of the second term in eH. 2.#\ 
must be reversed.  If the small loop is inside the shorted loop, and is near or touches the corner, the 

eHuation will under estimate the voltage because of the higher flux density in the corner.  In general, 
locations outside and adNacent to the shorted-large loop have higher total flux density, and thus produce 
more voltage, than inside the shorted loop.  (See Figure #.I.) 

At this point, some examples should be useful.  Based on Sandia National Laboratory analysis of a 

facility struck by lightning, we will assume a magnetization rate (dB^dt) of 2 kOb^m2s from an extreme 
strike.  In Figure 2.\, the voltage for various size open loops is plotted against the shorted-large loop 

Figure 2.L.  The loop size to wire 
ratio is compressed by the natural 

logarithmic functions. 
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size.  The wire radius is assumed to be # mm.  The voltage rises linearly with large-loop size because it is 
not in the natural log term.  Extrapolation of the lines to zero shorted-loop length gives the contribution 

from Nust the open loop.  For example, the #0 cm length open-loop voltage denoted by the green line 
would generate 20 V away from the large loop.  However, the voltage is increased by a factor of L, to `0 
V, if it shares a wire with a large loop of #.5 meters on a side.  Depending on the detonator, this 

common-mode voltage might be significant. 

 

Figure 2.6.  The small-loop voltage increases linearly with large-loop size. 

A plot of the gap voltage, as a function of the small-loop size, is more complex.  (See Figure 2.a.)  
The lowest, black-dotted, line denotes the small-loop voltage as a function of size without the influence 

of the shorted-large loop.  As the size of the shorted-large loop increases, the contribution from the 
term with natural log function dominates the output voltage.   

 

Figure 2.7.  The small-loop voltage increase with size is complex.   

2.3  Practical Considerations 

Ohile the sHuare loops interactions can be described by simple eHuations, rectangular shaped 
loops with large AwireA sizes are more common.  The rectangular loop voltages can still be estimated 

from the sHuare loop eHuations without resorting to more complex and less intuitive eHuations.  Three 
configurations were examinedJ  rectangular open loop, rectangular shorted loop, and AfatA wires.   
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The rectangular open-loop configuration is shown in Figure 2.`.   The 
voltage of the small loop can be estimated from the voltage of a sHuare 

loop of eHuivalent area multiplied by a geometric correction factor, krect-geo 
defined in eH. 2.#a.  The voltage contribution from solely the small 
rectangular loop is the same as the sHuare loop.  However the 

contribution from the shorted-large loop increases because more flux 
lines will be captured by the wider open loop. 

    

€ 

V (t)rect−open ≈  V (t)sq−open  krect-geo ,   where krect-geo =  
Lenrect-open

Lensq-open

   (2.17)  

A rectangular shorted-large loop with the same area as a sHuare loop 
will produce a lower magnetic field.  Ohile the induced voltage in the two large loops is the same, the 
inductance of the rectangular loop is higher because of the longer perimeter.  Hence, the short-circuit 

current is lower, and the magnetic fields will be lower.  Using the sHuare loop eHuation is conservative, 
over estimating the small-loop voltage.  The eHuations in the Perkins report will produce more accurate 
results C#.LD. 

Oork stands are often constructed of large metal beams for 

strength.  The beams force the magnetic fields to go around the metal.  
To account for all the flux, the area of the large loop formed by the 
beams should be estimated by using the centerline of the beam.  (See 

Figure 2.[.)  In most cases, the induced voltage from the shorted loop 
usually dominates the open-loop voltage.  This effect of the beam width 
is included in the simplified eHuation through the wire radius term, R.  

In the next section, the laboratory study to validate the simplified 

eHuation will be presented.

Figure 2.8.  Rectangular 
open-small loop. 

Figure 2.P.  Effective 
area of shorted loop. 
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3  Experimental 9alidation 

Because the eHuations might be used for critical calculations, a laboratory study was completed to 
validate the accuracy and limitations of the simplified eHuations and the full analytical treatment ^ 
modeling in reference #.L.  The lightning current changes relatively slowly, around a microsecond, and 

the lightning wavelength is much greater than the dimensions of the loops.  Therefore, we were able to 
use a 2-meter high transverse electromagnetic (TEM) cell to created known reasonably spatially-uniform 
magnetic fields to excite our loops.  The study was performed in the freHuency domain from #0 kHz to # 

MHz where we could accurately characterize relatively small loops.  Depending on the freHuency, they 
generate very low voltages, less than a millivolt even with the drive amplifier.   

The measurement setup is shown in Figure I.#.   Because the sensitivity of the loop drops with 
freHuency, a broadband amplifier is needed to increase the current, magnetic field, produced by a sine 

waveform generator.  The output of the TEM cell was terminated in a short to increase the current level.  
A calibrated B-dot sensor measured the magnetic field.  A digital scope using the averaging function 
measured the loop voltages.  The current into the cell was also measured to track the gain of the 

amplifier. 

 

Figure 3.1.  Test setup for measuring magnetic field coupling to loops. 

A number of loop configurations were checked including individual loops, open loops outside and 
inside of the shorted loop, and gap between the large and small loops.  Intermediate measurements, 

such as the current in the shorted # ft2 sHuare loop, were completed.  

The current in the shorted loop is shown in Figure I.2.  A Tektronix CT2 sensor with a bandwidth of 
#.2 kHz to 200 MHz measured the current.  The full analysis was used in the current calculation.  The 
small variations in the loop current for both lines were caused by changes in the magnetic field.  Since 

the current in the TEM was being measured, there was little reason to precisely control the magnetic 
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field.  There is good agreement between the measured and theoretical current above 200 kHz.  Below 
200 kHz, the sensor insertion impedance likely caused the divergence between the theoretical and 

measured currents. 

 
Figure 3.2.  Measured current in shorted loop agrees reasonably well with theory. 

The test configurations for an open-small loop (2.a in2) outside of the shorted-large loop are shown 

in the photographs in Figure I.I.  The touching loops produced a larger voltage than the configuration 
with a 2 mm gap.  The rate-of-change of the magnetic field density is about ## Ob^m2s.  The predicted 
and measured voltages shown in the plot match nicely.  The calculated voltages from the simplified 

eHuation and full analysis, and the experimental data matched within 5e for the touching case at # MHz.  
The data at the lower freHuencies, less than 200 kHz, has more measurement noisef nonetheless the 
agreement was good. 

 

Figure 3.3.  An open-small loop near a shorted-large loop will produce more voltage than an isolated 
small loop. 
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Ohen an open loop is placed inside of the shorted loop, the two terms in eH. 2.\ have opposite 
signs.  The voltage induced in the open loop by the external field is #`0g out of phase from the voltage 

induced by the flux of the shorted loop.  The total open-loop voltage could be less than from an isolated 
loop.  However, the corner location is special and has twice the magnetic density generated by the two 
orthogonal wires.  In the last example, the open loop is placed in an inside corner of the shorted-large 

loop.  (See Figure I.L.)  The total induced voltage is higher than from the isolated loop, but is still less 
than produced by the open loop on the outside.  The application of the simplified eHuation is more 
difficult when the open loop is inside the shorted loop in the corner. 

 

Figure 3.4.  The open-small loop situated in an inside corner of the shorted-large loop can produce more 

voltage than an isolated open-small loop 
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:  ;onclusion and -ummar< 
A detonator cable formed into a loop will produce common-mode voltages when exposed to 

changing magnetic fields (dB^dt).  If the cable is near or is a part of a shorted-large loop, the cable 
voltage could be significantly higher.  A full analysis of the interaction between the loops and the 

induced voltage is very complex.  A simple eHuation was derived from analysis of the magnetic fields 
around the shorted loop.  The eHuation assumes the loops are sHuare, and the only parameters reHuired 
are dB^dt, size length of the loops, and the cable radius.   

The simplified eHuation can be adapted to rectangular or irregularly 

shaped loops to turn out reasonable voltage estimates.  They can serve as 
a screening level to determine if detailed analysis is reHuired.  If the safety 
margin is large, no further analysis is needed.   

The full analysis may also be reHuired if the work stand geometry is 

very complicated, e.g., three or more loops, there are obNects in the loops, 
or there is the possibility of insulator breakdown.  (See Figure L.#)  The full 
analysis can determine the effect of magnetic field polarization and arc 

energy. 

The insight provided by the simplified eHuation could help guide the 
design of work stands that reduce rather than increase the threat posed 

by a lightning strike. 
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